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Abstract 
In this paper we present strategies for successfully  
capturing updates at Web sources. Web-based 
information agents provide integrated access to 
autonomous Web sources that can get updated. For many 
information agent applications we are interested in 
knowing when a Web source to which the application 
provides access, has been updated. We may also be 
interested in capturing all the updates at a Web source 
over a period of time i.e., detecting the updates and, for 
each update retrieving and storing the new version of 
data.  Previous work on update and change detection by 
polling does not adequately address this problem. We 
present strategies for intelligently polling a Web source 
for efficiently capturing changes at the source.   
 
1 Introduction 
An important issue with internet information agents is 
that of addressing the problem of updates at the remote 
Web sources being integrated. Information agents 
(Cohen 2000; Knoblock, Minton et al. 2001; Barish and 
Knoblock 2002; Doan and Halevy 2002; Kambhampati, 
Nambiar et al. 2002; Zadorozhny, Raschid et al. 2002) 
and other Web-based information extraction and 
integration systems (Davulcu, Yang et al. 2000; 
Kushmerick 2000; Byers, Freire et al. 2001; Popa, 
Velegrakis et al. 2002) provide integrated access to data 
residing in different Web sources. These Web sources 
are autonomous and the data on the Web pages at these 
sources may change. For performance optimization, 
information agents often cache or materialize data from 
the remote Web sources locally (Adali, Candan et al. 
1997; Ashish, Knoblock et al. 2002).  When updates or 
changes occur at Web sources, the cached data becomes 
inconsistent with the original data. To avoid providing 
the user with stale or inconsistent data, the information 
agent must update the cache as changes take place at the 
original Web sources. The information agent may also 
require access to the different updated versions of data at 
a Web source over a period of time. For instance the 
main headline story at the CNN news site 
(www.cnn.com) gets updated every hour or so (the same 
news story may  get    updated   or   a different news item  
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appears as the headline news) and an information agent 
may require access to all the different headline news 
stories [we refer to the distinct data items (i.e., stories) as 
versions] that appeared as headline news over a 
particular day.  We use the term capture for the process 
of detecting  an update and then retrieving and storing 
the new updated version of the data from a source. The 
information agent may also be monitoring (Barish and 
Knoblock 2002)  a source (via wrappers) and want to be 
notified when an update has taken place. 
The time (and frequency) of changes at many Web 
sources are not known in advance. As a result, the 
information agent must poll the Web source(s) to check 
for updates and changes. To minimize the probability of 
missing an update we must poll the sources very 
frequently.  However this high polling frequency  may 
not be feasible due to limited network and computational 
resources. In fact many sources would not allow polling 
the source at a high frequency as this causes an 
undesirable load on their Web server. In this paper we 
present the initial results of our work in progress on 
capturing changes at a Web source while polling the 
source only a limited number of times. Our approach is 
based on our observation of regularities of update times 
at many autonomous Web sources. 
 
The problem of detecting changes at a source and 
synchronizing the local copy  has been studied in many 
contexts such as  Web data sources, Web proxy servers, 
Internet crawlers and client-server database systems.    
(Cho and Garcia-Molina 2000) describes an approach to 
refreshing the local copy of an autonomous data source 
to keep the copy up-to-date. (Cho and Ntoulas 2002) 
presents a sampling-based strategy for keeping local 
copies of data up-to-date in a World Wide Web or data 
warehousing environment.  (Barish and Obraczka 2000) 
presents a survey of a variety of caching techniques for 
the World Wide Web. (Bright and Raschid 2002) 
presents a Web caching approach where a trade off can 
be made between the recency of the retrieved 
information versus the latency to retrieve it. Finally there 
is work on synchronizing updates in data warehousing 
(Labrinidis and Roussopoulos May 2000)  and in client 
server database system (Gal and Eckstein 2001) 
environments. The above efforts have provided 



approaches for optimizing various important aspects in 
synchronizing cached data such as minimizing the “age” 
of objects (i.e., ensuring that the data is refreshed very 
soon after it is updated), maximizing the average 
“freshness” (i.e, ensuring that most of the data is 
consistent with that in the original source) etc. However,  
an important problem that has not been addressed by 
existing approaches is that of capturing all the changes 
over a period of time. As another example, a Web source 
that we have extensively studied is a source in the 
aviation domain – the Digital Automatic Terminal 
Information services (D-ATIS) messages published at 
the ARINC Website1 where air traff ic messages are 
published at the rate of 1-2 messages per hour. A new 
message overwrites the existing message at the Web site. 
In one of our applications, the information agent requires 
access to all the different messages (versions)  published 
over a particular day. In this application, the information 
agent provides integrated access of the ATIS data with 
other aviation related data sources (such as radar data, 
weather data etc.) and some typical queries (performed 
by aviation safety analysts) require access to all the 
distinct ATIS messages over an entire day. Capturing all 
versions of data from a Web source is also important in 
archival applications such as Web archive (Cho 2003) 
and the Wayback machine (http://www.archive.org/)  
where we wish to archive all the different versions of an 
entire Web source as it changes over time. Existing work 
on polli ng and change detection addresses issues such as 
optimizing the age or freshness of cached data items but 
does not provide a way to effectively capture changes at 
a Web source while polli ng it a limited number of times. 
In this paper we present an approach to capturing all (or 
the maximum possible) updates at a Web source over a 
period of time with limited  resource constraints i.e., we  
will poll the source only  a limited number of times. Our 
approach is motivated by and based on our observation 
that for many sources, though autonomous, the updates 
not only occur with a  regular frequency but also 
(mostly) at or around certain times or between certain 
time intervals.   
 
The rest of this paper is organized as follows. In section 
2 we formalize the problem and our optimization goal. In 
section 3 we present our observations of the distributions 
of updates at Web sources. We then present strategies for 
polli ng the Web sources and synchronizing data based on 
the fact that the update distributions follow regularities at 
many sources. We also present experimental results 
supporting the validity of our hypotheses and 
effectiveness of the approach. Finall y in section 4 we 
discuss on going work and conclusion.  
 
2. Formalizing the Problem 
We first define some metrics that will allow us to state 
our goal of effectively capturing updates formally. The 

                                                
1 http://www.arinc.com/products/voice_data_comm/d_atis.html   

metrics also will be a means to evaluate the effectiveness 
of various strategies for capturing updates. We then 
present a formal statement of the change capture 
optimization  problem. 
 
2.1 Metrics 
(a) Change Recall: We introduce the Change Recall 
metric, which is a measure of how successful we have 
been in capturing the changes at a source. Formally, 
Change Recall i s defined as the number of changed items 
downloaded, over the total number of changed items in a 
particular time period. For instance if the ATIS source 
was updated 30 times a particular day (i.e., there were 30 
different messages published over the day) and we 
captured   27 of these, then the Change Recall would be 
27/30 = 0.9.  Similarly if there were 18 distinct headline 
stories that appeared as the top story on the CNN Web 
site and we captured  15 distinct stories, the Change 
Recall would be 15/18 = 0.83.  
Ideally we would want the Change Recall to be 1. This 
may not be possible given resource constraints, so our 
goal is to maximize Change Recall . 
 
(b) Freshness and Age 
The Freshness and Age metrics were defined in (Cho and 
Ntoulas 2002). The freshness of a cached data item F is 
defined as: 
F  = 1  if the cached data item is up to date 
    =  0  otherwise 
 
The age A of an object is defined as: 
A = 0  if the cached object is up to date 
    = t - tu  if the cached object is not up to date, where  t= 
current time and tu = time of last update 
 
2.2 Problem Statement 
If we are polli ng a source for detecting updates, and 
polli ng with limited frequency, the particular times at 
which we poll can significantly affect the Change Recall . 
For instance, consider again the updates at the ATIS 
source, where the update times are as shown in Table 1. 
 
1:05, 1:14, 2:04, 2:15, 3:03, 3:14 …. 
 
Table 1. Update Time Log 
 
 Let’s say that we have the constraint that we can poll the 
source only at most 2 times per hour. A naive strategy of 
polli ng the source once at the turn of every hour and 
once again at 30 min past the hour (i.e., poll at 1pm, 
1:30pm  2pm, 2:30pm  .. ..) would cause us to miss half 
the updates and result in a poor Change Recall of about 
0.5. A more intelli gent strategy would be to poll the 
source at 5 minutes past and 15 minutes past the hour 
(1:05, 1:15, 2:05, 2:15 ...). With this strategy we would 
capture almost all the updates and achieve a Change 
Recall  of close to 1.0 The key problem is thus of 



deciding at what times to poll a source such that the 
Change Recall i s maximized. We define this formally. 
  
Definition: Polling Strategy 
A "polli ng strategy" is defined as a tuple <T, S> where T 
is a time period (such as an hour, day month etc.) over 
which the polli ng times repeat in a cycle and, 
S = { S1,S2, ...., Sm} is a set of times at which we poll the 
source within each time period T. 
So a strategy defined by <hour, { 5,15,45} > implies that 
in each hour we poll 3 times, at 5 minutes past, 15 
minutes and 45 minutes past the hour. 
 
We now state the Change Recall optimization problem 
formally: 
 
Given:  
O = a Web source 
T = time period 
N = maximum number of times we can poll S in the time 
period T 
H = previous history of updates at the source 
Generate: 
A polli ng strategy <T,S> such that the expected Change 
Recall  i s maximized, where we poll at most N times in 
the time period T. 
 
Note that in certain applications we may also be 
interested in optimizing other metrics i.e., minimizing 
the average age or maximizing the freshness. A polli ng 
strategy that maximizes Change Recall , can also be used 
to minimize the average age of cached data items and in 
fact performs better than existing strategies in many 
cases ! 
 
3. Polling Strategy 
We make use of the historical data for update times at a 
Web source to estimate the probabilit y of missing 
updates with any polli ng strategy. Like existing 
approaches, our approach is based on the assumption that 
the historical pattern of updates (over an appropriate time 
period) at a Web source is a good predictor of the future 
pattern of updates at that source. We thus first talk about 
our observations of update time distributions at Web 
sources and then present approaches for generating an 
optimal polli ng strategy. 
 
3.1 Update Time Distributions 
While a source may change anytime, the times of 
updates at many sources do follow certain regular 
distributions . In (Cho and Ntoulas 2002) it was shown 
that the Poisson process effectively models change at the 
Web sources they  sampled. However there is a 
difference in behavior between all Web pages of the 
entire Web and a particular set of Web pages. While 
hundreds of milli ons of Web pages in an entire set can be 
considered to have been changed by a random process on 
average, for a particular set of pages as well as different 

scales of study, the randomness of the change 
occurrences has to be addressed before we can make 
confident predictions about the polli ng. While the 
Poisson process may model updates of web sources in 
general, specific sources may exhibit update distributions 
that are distinctly different.  It is our observation that for 
many sources we can use more accurate models to fit the 
distribution of update times at a Web source. For 
instance for the ATIS source a log of update times for a 
particular airport is shown in Table 1.  Most of the 
updates occur around 5 min  past or 15 min past the hour. 
This distribution is consistent across several months. Or 
consider a source such as Hollywood.com. The “new 
movies this week” 2 page changes once a week, mostly 
on the thursday of the week, announcing new movies 
releasing on Friday or the weekend. The fact that a 
source gets updated according to some such distribution 
and knowledge of this distribution can be exploited to 
come up with a smart strategy for polli ng that source. For 
instance from the observation that for the above ATIS 
messages, there are mostly 2 messages published per 
hour, the first  by 5 min past the hour  and the second by 
15 min past the hour , we could poll the source at 5 min 
and 15 min past the hour and we would capture most of 
the updates. For the holl ywood.com. source we could 
just poll once a week, every thursday when the movie 
screenings change. Of course many update distributions 
will not be that simple.  
Our second observation is that the distribution of updates 
of a web page would depend on semantics of the web 
page itself.  For example, the li kelihood of updates to the 
CNN.com home page in a short time are higher if the 
page is reporting a breaking story or a very rapidly 
changing event.  
 
So the update distribution is indeed helpful in deciding a 
good polli ng strategy. The problem is to come up with an 
approach to generate such a strategy automaticall y given 
the update distribution. We now describe two alternative 
approaches to generating the optimal polli ng strategy. 
 (1) Empirical Approach: We can systematicall y consider 
all possible polli ng times for an interval of interest and 
can use the historical information to compute how many 
changes would have been missed if we had used 
particular polli ng strategy.  If this can be done in a  
computationally eff icient manner, the approach  can be 
used to find an  optimal strategy. 
(2) Theoretical Modeling Approach:  We can model the 
update patterns using an appropriate probabilit y 
distribution and do analysis based on this probabilit y 
distribution to infer the best polli ng strategy.  This 
approach has been taken in previous work and is 
computationally eff icient.  
 
3.1.1 Empirical Approach 
Suppose { T1, T2, … Ts} is the set of time points at which 
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one would consider polli ng in the interval T, where T(i + 

1) > Ti. For example, { 1, 2, … 60} (minutes) is the set of 
time points at which one would consider polli ng ATIS 
data in a typical hour (T = 60 minutes). We define a 
probabilit y function, NumMisses(Ti, k) as the number of 
missed updates in the interval (Ti, Ti+k) if we poll at Ti 
and Ti+k and additionally poll l times in the interval (Ti, 
Ti+k) using an optimal strategy. Let Polli ngSet(Ti,k,l) be 
the corresponding set of time points at which one would 
poll using the optimal strategy. Also, N is the maximum 
number of times we can poll i n the interval T as defined 
in the problem statement.  NumMisses(Ti, k, 0) can 
generall y be derived from historical data for all possible 
values of  i and k. 
 
We propose the following algorithm for computing the 
NumMisses function eff iciently for all possible l of 
interest: 
 
for l = 1 to (N - 2)   
 for i = 1 to s  
  for k = 1 to s  
   NumMisses(T i ,k,l) = Min  j=1 to (k - 1) (NumMisses(T i ,j,1)  

 + NumMisses(T i + j  , k - j, l – 1))  
  
   Let jmin be value of j for which above  
   expression is minimum  
 
   PollingSet(Ti,k,l)=PollingSet(Ti,k,1) U  

    PollingSet(T i + jmin ,k - jmin,l – 1)  
  End for  
 End for  
End for  
 
The set of time points in the best polli ng strategy in the 
interval T is Polli ngSet(Timin, kmin, N-2) where imin and 
kmin are i and k  for which NumMisses(Ti, k, N-2) is 
minimum. 
 
In the above algorithm, NumMisses is computed for 
o(s*s*N) input values.  Each computation of 
NumMisses(Ti ,k,l) and Polli ngSet(Ti ,k,l) can be done in 
at most s steps.  So the above algorithm can compute 
NumMisses(Ti, k , l)  and Polli ngSet(Ti ,k,l)  using at 
most s ** 3  * N computations for all i , k and l.  As the 
final step involves computing the minimum of s ** 2 

values, this algorithm can compute the best polli ng 
strategy in O(s ** 3  * N) steps. 
 
Using the above algorithm we thus systematicall y 
consider all possible combinations of polli ng times given 
the polli ng frequency and determine which is the best 
polli ng strategy. This approach is li kely to be practical 
for small values of s, but not for large values of s. In the 
next section, we will describe another approach that can 
be used even for large values of s. 
 
3.1.2 Theoretical Modeling Approach 
Generating the optimal polli ng strategy by exhaustive 
search may be prohibiti vely expensive in many cases i.e., 
when there are a very large number of possible 
combinations of possible polli ng times and searching 
through the entire space is expensive. We present an 

eff icient algorithm for determining a near optimal poll ing 
strategy. The algorithm is based on the assumption that 
the probabilit y density function representing the update 
probabilit y of a particular data item on a Web source 
being updated is uniform in small time intervals. This 
assumption is reasonable but not completely accurate for 
many Web sources. Thus the algorithm is not guaranteed 
to find an optimal polli ng strategy but instead finds a 
near optimal strategy that is almost as good as the 
optimal strategy. 
 
The algorithm is based on a couple of very  elementary 
characteristics of updates in different kinds of time 
intervals. First, there may be intervals where only at most 
one update can occur. There is no need to poll multiple 
times in such intervals, rather one can poll just once, at 
the end of the interval. Next, for intervals where two or 
more updates may occur any time we need to poll as 
many times as we can. For such intervals, if we know 
how the probabilit y of missing an update changes as a 
function of the number of times we poll i n that interval, 
we can systematicall y determine how many times to poll 
in each such interval (given a limited number of total 
polli ng times). 
. There are thus two primary steps in the algorithm: 

(i) Find the time intervals where there are zero 
or at most one updates (we call such 
intervals single update intervals) and assign 
poll s to those intervals appropriately. 

(ii ) For the remaining intervals i.e., intervals 
where 2 or more updates may occur (we 
call such intervals multiple update 
intervals), and assign the remaining poll s 
appropriately.  

 
Consider again the ATIS messages. Let’s say at most 3 
messages are published (i.e., updated) every hour. We 
tag these messages (the first, second and third)  as A, B 
and C. Say the update probabilit y distributions 
(represented by probabilit y density functions) of each of 
these messages is as shown in Fig 2 which shows a plot 
of update probabilit y distributions versus time (in 
minutes). A is updated only sometime between t=5 and 
t=15 min etc. If we poll only thrice an hour, at t=15,t=35 
and t=50 we will capture all the updates A,B and C.  
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  Fig 2. Update Probabilit y Distributions 



This is possible because the probabilit y distributions of 
A,B and C do not overlap anywhere. Only at most one 
message (A,B or C) can get updated in a time interval 
and we simply poll once at the end of that interval.  What 
if the probabilit y distributions do overlap ? For instance 
consider a different distribution as shown in Fig 3. Both 
A and B can get updated between t=10 and t=20 and 
both B and C can get updated between t=30 and t=35. 
These are the multiple update intervals. There are also 
single update intervals. For instance only A may occur 
between t=5 and t=20 (so we need poll only once at the 
end of this interval at t=20). Similarly we poll once at 
t=10, t=30 ,t=35 and t=40.  Note that there is a possibilit y 
of missing an update in this case. Two or more updates 
(A and B) could occur between t=10 and t=20 and we 
will capture only one of them. Also two or more updates 
(B and C) could occur between t=30 and t=35. So far we 
have assigned a total of 5 poll s per hour. Suppose we 
could poll more than 5 times. At what times should we 
poll additionally ? Polli ng more in a multiple update 
intervals decreases the probabilit y of missing an update 
in that interval. We will examine shortly as to how 
exactly this probabilit y varies with the number of times 
we poll i n the interval. So any additional poll s should be 
assigned to the multiple update intervals. But there could 
be many such multiple update intervals. So how do we 
relatively assign the additional poll s between these 
intervals ? For instance in the current example we have 2 
multiple update intervals and if we had a total of 5 
additional poll s we could assign 1 additional poll to the 
first multiple update interval and 4 to the second or 2 to 
the first and 3 to the second etc. Which assignment of 
these minimizes the total probabilit y of missing an 
update ? Having a model of the update probabilit y 
distributions of the updates in the different multiple 
update intervals will allow us to determine the 
probabilit y of missing updates for various assignments. 
In general an update distribution may be of any form 
within an update interval. However for many sources we 
can approximate the probabilit y density function for an 
update distribution to be uniform in that interval, for 
intervals that are suff iciently small .  
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Fig 3. Update Probabilit y Distributions 

 
For such cases, i.e., where approximating the probabilit y 
distribution as uniform in small i ntervals is reasonable, 

we can evaluate the probabilit y of missing updates for 
different assignments and thus find the optimal 
assignment. We describe how we do this below. Let’s 
say we have i such multiple update intervals. Suppose we 
poll K i times in an interval i . What is the probabilit y of 
missing an update in the interval i now? We poll at 
uniform sub-intervals within interval i as shown in Fig 4.  
We will mi ss an update in interval i i f and only if the two 
updates occur together in any one of the K i sub-intervals. 
The probabilit y of both updates occurring in a particular 
sub interval is given by: 
(PrA t/K i) * (PrB t/K i) = PrAPrBt2/K i

2 

 

 

 

 

 
 
 
 
 
 
 
Fig 4. Polli ng in a multiple update interval. 
 
where PrA and PrB  are the probabilit y densities of A and 
B in that interval respectively. The probabilit y that two 
updates occur together in any of the Ki sub-intervals is 
simply: 
K i* (PrA t/K i) * (PrB t/K i) = PrAPrBt2/K i

 

 
This expression is of the form Cit

2/K i where Ci=PrAPrB  is 
a constant. Although we have ill ustrated the above for 
the case where 2 updates can occur in an interval, the 
expression representing the probabilit y of missing an 
update is of the form where 2 or even more updates can 
occur in an interval.  
Now the probabilit y of missing any update in any of the i 
multiple update intervals is: 
Σn i=1  Cit

2/K i 
 
Note that we take all multiple updates to be of equal 
length i.e., t. If the multiple update intervals are not 
originall y of equal length we can sub divide them into 
intervals of length of the greatest common divisor of the 
lengths of the (original) multiple update intervals.  
We have to find Ki such that ΣKi=K 
and Σn i=1  Ci/K i   
 
is minimized. This is a well known optimization problem 
and the minima lies when: 
C1/K1

2=C2/K2
2 = …… Cn/Kn

2   (condition I) 
  
Thus we simply assign the K is according to the above 
equation. The algorithm to find a (near) optimal polli ng 
strategy using theoretical modeling can be stated as 
follows: 
 

sub           polli ng Ki times 
interval 
 
 

i th interval 
     t 



1. Find the update probability 
distributions of the various 
updates. 

2. Find the single update 
intervals. 

a. Poll once at the beginning 
and once at the end of 
each such interval. 

3. Find the multiple update 
intervals. 

a. Assign the remaining polls 
to the multiple update 
intervals in the 
proportion defined by 
condition I above 

 
While we do not present a proof here, the above 
algorithm is linear in the number of possible polli ng 
points one would consider in an interval. 
 
3.1.3 Experimental Results 
We evaluate the effectiveness of our approaches by 
measuring the Change Recall from the ATIS Web server 
using various strategies3. We used real historical update 
time data collected over several months from the ATIS 
Web server and tested the strategies for Change Recall 
over the actual ATIS source. We evaluate three different 
strategies: 

(i) A naïve uniform strategy where given N 
polls in a time period (an hour in this case) 
we simply poll N times at uniform intervals 
in the time period. 

(ii ) An optimal polling strategy generated by 
exhaustive search. 

(ii i) A near optimal polli ng strategy generated 
by theoretical modeling. 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12

Polling frequency (times/hr)

C
ha

ng
e 

R
ec

al
l

Naive (uniform)

Exhaustive search

Theoretical modeling

 
 
Fig 5. Effectiveness of strategies. 
 

                                                
3 At this point we have only evaluated the strategies with the ATIS 
Web source. However by the time of the workshop we expect to 
provide evaluation results with several other Web sources. 

As we can see in Fig 5 above, the optimal polli ng 
strategies (both by exhaustive search and theoretical 
modeling) result in significantly better Change Recall 
than the naïve uniform strategy.  The improvement is 
more significant when the polli ng frequency is less.  
Thus exploiting the update time distribution indeed helps 
in achieving a better Change Recall versus existing 
sampling based approaches that would result in Change 
Recall obtained by the naïve (uniform) approach. Also 
the theoretical modeling strategy performs almost as well 
as the exhaustive search strategy. So, this indicates that 
in cases where the exhaustive search strategy is 
computationally expensive, finding a near optimal 
strategy by theoretical modeling is a good alternative.  
We must note that in some other scenarios the naïve 
strategy may perform significantly worse. For instance 
suppose we had an update pattern that was of the form 
{ 1:00, 1:05, 1:10, 1:15, 2:00, 2:04, 2:09, 2:15,3:01,3:05 
……}  With a naive strategy with N=4 (i.e., polli ng at 
1:00,1:15,1:30,2:00, …)  we would get a very poor 
Change Recall of ~ 0.25 whereas with the optimal 
strategies we would get a Change Recall of close to 1.0 
when polli ng 4 times an hour.  
  
4. Work in Progress and Conclusion 
In this paper, we introduced change recall as an 
important metric to be considered in remote data source 
synchronization.  Then, we noted that it is possible to 
utili ze knowledge of specific update probabilit y 
distributions and their dependence of domain semantics 
in devising a polli ng strategy.   We discussed two 
different polli ng strategies we are using in our 
applications.  Based on preliminary results, these 
strategies are more effective for capturing changes than 
existing strategies, which do not focus on the change 
capture problem in particular and are based solely on the 
frequency of updates. There are several tasks and issues 
that we are working on right now, namely: 

• More extensively studying the update patterns at 
a variety of different autonomous Web sources.  

• Testing the effectiveness of the polli ng  
strategies with many other Web sources. 

• Extending the theoretical modeling approach to 
cases where the uniform distribution 
approximation is not reasonable. 

• Testing the effectiveness of our strategies in 
optimizing factors other than change capture, 
such as age and freshness of cached objects. 

• Utili zing the semantics of the data to predict the 
probabilit y of the next update and incorporating 
this knowledge in generating the polli ng 
strategy. 

Besides information agents, our change capture strategies 
are also applicable to a variety of other systems such as 
Web crawlers, Web proxy server caches and Web 
archiving systems where it is important to synchronize 
data cached from autonomous sources.  
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